Source code for pybamm.models.full_battery_models.base_battery_model

#
# Base battery model class
#

import pybamm
import numbers
from functools import cached_property


[docs]class BatteryModelOptions(pybamm.FuzzyDict): """ Attributes ---------- options: dict A dictionary of options to be passed to the model. The options that can be set are listed below. Note that not all of the options are compatible with each other and with all of the models implemented in PyBaMM. Each option is optional and takes a default value if not provided. In general, the option provided must be a string, but there are some cases where a 2-tuple of strings can be provided instead to indicate a different option for the negative and positive electrodes. * "calculate discharge energy": str Whether to calculate the discharge energy, throughput energy and throughput capacity in addition to discharge capacity. Must be one of "true" or "false". "false" is the default, since calculating discharge energy can be computationally expensive for simple models like SPM. * "cell geometry" : str Sets the geometry of the cell. Can be "pouch" (default) or "arbitrary". The arbitrary geometry option solves a 1D electrochemical model with prescribed cell volume and cross-sectional area, and (if thermal effects are included) solves a lumped thermal model with prescribed surface area for cooling. * "calculate heat source for isothermal models" : str Whether to calculate the heat source terms during isothermal operation. Can be "true" or "false". If "false", the heat source terms are set to zero. Default is "false" since this option may require additional parameters not needed by the electrochemical model. * "convection" : str Whether to include the effects of convection in the model. Can be "none" (default), "uniform transverse" or "full transverse". Must be "none" for lithium-ion models. * "current collector" : str Sets the current collector model to use. Can be "uniform" (default), "potential pair" or "potential pair quite conductive". * "dimensionality" : int Sets the dimension of the current collector problem. Can be 0 (default), 1 or 2. * "electrolyte conductivity" : str Can be "default" (default), "full", "leading order", "composite" or "integrated". * "hydrolysis" : str Whether to include hydrolysis in the model. Only implemented for lead-acid models. Can be "false" (default) or "true". If "true", then "surface form" cannot be 'false'. * "intercalation kinetics" : str Model for intercalation kinetics. Can be "symmetric Butler-Volmer" (default), "asymmetric Butler-Volmer", "linear", "Marcus", or "Marcus-Hush-Chidsey" (which uses the asymptotic form from Zeng 2014). A 2-tuple can be provided for different behaviour in negative and positive electrodes. * "interface utilisation": str Can be "full" (default), "constant", or "current-driven". * "lithium plating" : str Sets the model for lithium plating. Can be "none" (default), "reversible", "partially reversible", or "irreversible". * "lithium plating porosity change" : str Whether to include porosity change due to lithium plating, can be "false" (default) or "true". * "loss of active material" : str Sets the model for loss of active material. Can be "none" (default), "stress-driven", "reaction-driven", or "stress and reaction-driven". A 2-tuple can be provided for different behaviour in negative and positive electrodes. * "particle phases": str Number of phases present in the electrode. A 2-tuple can be provided for different behaviour in negative and positive electrodes. For example, set to ("2", "1") for a negative electrode with 2 phases, e.g. graphite and silicon. * "operating mode" : str Sets the operating mode for the model. This determines how the current is set. Can be: - "current" (default) : the current is explicity supplied - "voltage"/"power"/"resistance" : solve an algebraic equation for \ current such that voltage/power/resistance is correct - "differential power"/"differential resistance" : solve a \ differential equation for the power or resistance - "explicit power"/"explicit resistance" : current is defined in terms \ of the voltage such that power/resistance is correct - "CCCV": a special implementation of the common constant-current \ constant-voltage charging protocol, via an ODE for the current - callable : if a callable is given as this option, the function \ defines the residual of an algebraic equation. The applied current \ will be solved for such that the algebraic constraint is satisfied. * "particle" : str Sets the submodel to use to describe behaviour within the particle. Can be "Fickian diffusion" (default), "uniform profile", "quadratic profile", or "quartic profile". * "particle shape" : str Sets the model shape of the electrode particles. This is used to calculate the surface area to volume ratio. Can be "spherical" (default), or "no particles". * "particle size" : str Sets the model to include a single active particle size or a distribution of sizes at any macroscale location. Can be "single" (default) or "distribution". Option applies to both electrodes. * "particle mechanics" : str Sets the model to account for mechanical effects such as particle swelling and cracking. Can be "none" (default), "swelling only", or "swelling and cracking". A 2-tuple can be provided for different behaviour in negative and positive electrodes. * "SEI" : str Set the SEI submodel to be used. Options are: - "none": :class:`pybamm.sei.NoSEI` (no SEI growth) - "constant": :class:`pybamm.sei.Constant` (constant SEI thickness) - "reaction limited", "reaction limited (asymmetric)", \ "solvent-diffusion limited", "electron-migration limited", \ "interstitial-diffusion limited", "ec reaction limited" \ or "ec reaction limited (asymmetric)": :class:`pybamm.sei.SEIGrowth` * "SEI film resistance" : str Set the submodel for additional term in the overpotential due to SEI. The default value is "none" if the "SEI" option is "none", and "distributed" otherwise. This is because the "distributed" model is more complex than the model with no additional resistance, which adds unnecessary complexity if there is no SEI in the first place - "none": no additional resistance\ .. math:: \\eta_r = \\frac{F}{RT} * (\\phi_s - \\phi_e - U) - "distributed": properly included additional resistance term\ .. math:: \\eta_r = \\frac{F}{RT} * (\\phi_s - \\phi_e - U - R_{sei} * L_{sei} * j) - "average": constant additional resistance term (approximation to the \ true model). This model can give similar results to the \ "distributed" case without needing to make j an algebraic state\ .. math:: \\eta_r = \\frac{F}{RT} * (\\phi_s - \\phi_e - U - R_{sei} * L_{sei} * \\frac{I}{aL}) * "SEI on cracks" : str Whether to include SEI growth on particle cracks, can be "false" (default) or "true". * "SEI porosity change" : str Whether to include porosity change due to SEI formation, can be "false" (default) or "true". * "stress-induced diffusion" : str Whether to include stress-induced diffusion, can be "false" or "true". The default is "false" if "particle mechanics" is "none" and "true" otherwise. A 2-tuple can be provided for different behaviour in negative and positive electrodes. * "surface form" : str Whether to use the surface formulation of the problem. Can be "false" (default), "differential" or "algebraic". * "thermal" : str Sets the thermal model to use. Can be "isothermal" (default), "lumped", "x-lumped", or "x-full". * "timescale" : str or number Sets the timescale of the model. If "default", the discharge timescale, as defined by other parameters, is used. Otherwise, the number is used. * "total interfacial current density as a state" : str Whether to make a state for the total interfacial current density and solve an algebraic equation for it. Default is "false", unless "SEI film resistance" is distributed in which case it is automatically set to "true". * "working electrode": str Which electrode(s) intercalates and which is counter. If "both" (default), the model is a standard battery. Otherwise can be "negative" or "positive" to indicate a half-cell model. * "x-average side reactions": str Whether to average the side reactions (SEI growth, lithium plating and the respective porosity change) over the x-axis in Single Particle Models, can be "false" or "true". Default is "false" for SPMe and "true" for SPM. **Extends:** :class:`dict` """ def __init__(self, extra_options): self.possible_options = { "calculate discharge energy": ["false", "true"], "calculate heat source for isothermal models": ["false", "true"], "cell geometry": ["arbitrary", "pouch"], "contact resistance": ["false", "true"], "convection": ["none", "uniform transverse", "full transverse"], "current collector": [ "uniform", "potential pair", "potential pair quite conductive", ], "dimensionality": [0, 1, 2], "electrolyte conductivity": [ "default", "full", "leading order", "composite", "integrated", ], "hydrolysis": ["false", "true"], "intercalation kinetics": [ "symmetric Butler-Volmer", "asymmetric Butler-Volmer", "linear", "Marcus", "Marcus-Hush-Chidsey", ], "interface utilisation": ["full", "constant", "current-driven"], "lithium plating": [ "none", "reversible", "partially reversible", "irreversible", ], "lithium plating porosity change": ["false", "true"], "loss of active material": [ "none", "stress-driven", "reaction-driven", "stress and reaction-driven", ], "open circuit potential": ["single", "current sigmoid"], "operating mode": [ "current", "voltage", "power", "differential power", "explicit power", "resistance", "differential resistance", "explicit resistance", "CCCV", ], "particle": [ "Fickian diffusion", "fast diffusion", "uniform profile", "quadratic profile", "quartic profile", ], "particle mechanics": ["none", "swelling only", "swelling and cracking"], "particle phases": ["1", "2"], "particle shape": ["spherical", "no particles"], "particle size": ["single", "distribution"], "SEI": [ "none", "constant", "reaction limited", "reaction limited (asymmetric)", "solvent-diffusion limited", "electron-migration limited", "interstitial-diffusion limited", "ec reaction limited", "ec reaction limited (asymmetric)", ], "SEI film resistance": ["none", "distributed", "average"], "SEI on cracks": ["false", "true"], "SEI porosity change": ["false", "true"], "stress-induced diffusion": ["false", "true"], "surface form": ["false", "differential", "algebraic"], "thermal": ["isothermal", "lumped", "x-lumped", "x-full"], "total interfacial current density as a state": ["false", "true"], "working electrode": ["both", "negative", "positive"], "x-average side reactions": ["false", "true"], } default_options = { name: options[0] for name, options in self.possible_options.items() } default_options["timescale"] = "default" # Change the default for cell geometry based on which thermal option is provided extra_options = extra_options or {} # return "none" if option not given thermal_option = extra_options.get("thermal", "none") if thermal_option in ["none", "isothermal", "lumped"]: default_options["cell geometry"] = "arbitrary" else: default_options["cell geometry"] = "pouch" # The "cell geometry" option will still be overridden by extra_options if # provided # Change the default for SEI film resistance based on which SEI option is # provided # return "none" if option not given sei_option = extra_options.get("SEI", "none") if sei_option == "none": default_options["SEI film resistance"] = "none" else: default_options["SEI film resistance"] = "distributed" # The "SEI film resistance" option will still be overridden by extra_options if # provided # Change the default for particle mechanics based on which SEI on cracks and LAM # options are provided # return "false" and "none" respectively if options not given SEI_cracks_option = extra_options.get("SEI on cracks", "false") LAM_opt = extra_options.get("loss of active material", "none") if SEI_cracks_option == "true": if "stress-driven" in LAM_opt or "stress and reaction-driven" in LAM_opt: default_options["particle mechanics"] = ( "swelling and cracking", "swelling only", ) else: default_options["particle mechanics"] = ( "swelling and cracking", "none", ) else: if "stress-driven" in LAM_opt or "stress and reaction-driven" in LAM_opt: default_options["particle mechanics"] = "swelling only" else: default_options["particle mechanics"] = "none" # The "particle mechanics" option will still be overridden by extra_options if # provided # Change the default for stress-induced diffusion based on which particle # mechanics option is provided. If the user doesn't supply a particle mechanics # option set the default stress-induced diffusion option based on the default # particle mechanics option which may change depending on other options # (e.g. for stress-driven LAM the default mechanics option is "swelling only") mechanics_option = extra_options.get("particle mechanics", "none") if ( mechanics_option == "none" and default_options["particle mechanics"] == "none" ): default_options["stress-induced diffusion"] = "false" else: default_options["stress-induced diffusion"] = "true" # The "stress-induced diffusion" option will still be overridden by # extra_options if provided # Change the default for surface form based on which particle # phases option is provided. # return "1" if option not given phases_option = extra_options.get("particle phases", "1") if phases_option == "1": default_options["surface form"] = "false" else: default_options["surface form"] = "algebraic" # The "surface form" option will still be overridden by # extra_options if provided # Change default SEI model based on which lithium plating option is provided # return "none" if option not given plating_option = extra_options.get("lithium plating", "none") if plating_option == "partially reversible": default_options["SEI"] = "constant" else: default_options["SEI"] = "none" # The "SEI" option will still be overridden by extra_options if provided options = pybamm.FuzzyDict(default_options) # any extra options overwrite the default options for name, opt in extra_options.items(): if name in default_options: options[name] = opt else: if name == "particle cracking": raise pybamm.OptionError( "The 'particle cracking' option has been renamed. " "Use 'particle mechanics' instead." ) else: raise pybamm.OptionError( "Option '{}' not recognised. Best matches are {}".format( name, options.get_best_matches(name) ) ) # If "SEI film resistance" is "distributed" then "total interfacial current # density as a state" must be "true" if options["SEI film resistance"] == "distributed": options["total interfacial current density as a state"] = "true" # Check that extra_options did not try to provide a clashing option if ( extra_options.get("total interfacial current density as a state") == "false" ): raise pybamm.OptionError( "If 'sei film resistance' is 'distributed' then 'total interfacial " "current density as a state' must be 'true'" ) # If "SEI film resistance" is not "none" and there are multiple phases # then "total interfacial current density as a state" must be "true" if ( options["SEI film resistance"] != "none" and options["particle phases"] != "1" ): options["total interfacial current density as a state"] = "true" # Check that extra_options did not try to provide a clashing option if ( extra_options.get("total interfacial current density as a state") == "false" ): raise pybamm.OptionError( "If 'SEI film resistance' is not 'none' " "and there are multiple phases then 'total interfacial " "current density as a state' must be 'true'" ) # Options not yet compatible with contact resistance if options["contact resistance"] == "true": if options["operating mode"] == "explicit power": raise NotImplementedError( "Contact resistance not yet supported for explicit power." ) if options["operating mode"] == "explicit resistance": raise NotImplementedError( "Contact resistance not yet supported for explicit resistance." ) # Options not yet compatible with particle-size distributions if options["particle size"] == "distribution": if options["lithium plating"] != "none": raise NotImplementedError( "Lithium plating submodels do not yet support particle-size " "distributions." ) if options["particle"] in ["quadratic profile", "quartic profile"]: raise NotImplementedError( "'quadratic' and 'quartic' concentration profiles have not yet " "been implemented for particle-size ditributions" ) if options["particle mechanics"] != "none": raise NotImplementedError( "Particle mechanics submodels do not yet support particle-size" " distributions." ) if options["particle shape"] != "spherical": raise NotImplementedError( "Particle shape must be 'spherical' for particle-size distribution" " submodels." ) if options["SEI"] != "none": raise NotImplementedError( "SEI submodels do not yet support particle-size distributions." ) if options["stress-induced diffusion"] == "true": raise NotImplementedError( "stress-induced diffusion cannot yet be included in " "particle-size distributions." ) if options["thermal"] == "x-full": raise NotImplementedError( "X-full thermal submodels do not yet support particle-size" " distributions." ) # Renamed options if options["particle"] == "fast diffusion": raise pybamm.OptionError( "The 'fast diffusion' option has been renamed. " "Use 'uniform profile' instead." ) if options["SEI porosity change"] in [True, False]: raise pybamm.OptionError( "SEI porosity change must now be given in string format " "('true' or 'false')" ) # Some standard checks to make sure options are compatible if options["dimensionality"] == 0: if options["current collector"] not in ["uniform"]: raise pybamm.OptionError( "current collector model must be uniform in 0D model" ) if options["convection"] == "full transverse": raise pybamm.OptionError( "cannot have transverse convection in 0D model" ) if ( options["thermal"] in ["x-lumped", "x-full"] and options["cell geometry"] != "pouch" ): raise pybamm.OptionError( options["thermal"] + " model must have pouch geometry." ) if options["thermal"] == "x-full" and options["dimensionality"] != 0: n = options["dimensionality"] raise pybamm.OptionError( f"X-full thermal submodels do not yet support {n}D current collectors" ) if isinstance(options["stress-induced diffusion"], str): if ( options["stress-induced diffusion"] == "true" and options["particle mechanics"] == "none" ): raise pybamm.OptionError( "cannot have stress-induced diffusion without a particle " "mechanics model" ) if options["working electrode"] != "both": if options["thermal"] == "x-full": raise pybamm.OptionError( "X-full thermal submodel is not compatible with half-cell models" ) elif options["thermal"] == "x-lumped" and options["dimensionality"] != 0: n = options["dimensionality"] raise pybamm.OptionError( f"X-lumped thermal submodels do not yet support {n}D " "current collectors in a half-cell configuration" ) elif options["SEI on cracks"] == "true": raise NotImplementedError( "SEI on cracks not yet implemented for half-cell models" ) if options["particle phases"] != "1": if not ( options["surface form"] != "false" and options["particle size"] == "single" and options["particle"] == "Fickian diffusion" and options["particle mechanics"] == "none" and options["loss of active material"] == "none" and options["lithium plating"] == "none" ): raise pybamm.OptionError( "If there are multiple particle phases: 'surface form' cannot be " "'false', 'particle size' must be 'false', 'particle' must be " "'Fickian diffusion'. Also the following must " "be 'none': 'particle mechanics', " "'loss of active material', 'lithium plating'" ) # Check options are valid for option, value in options.items(): if option in ["working electrode"]: pass else: if isinstance(value, str) or option in [ "dimensionality", "operating mode", "timescale", ]: # some options accept non-strings value = (value,) else: if not ( ( option in [ "intercalation kinetics", "interface utilisation", "loss of active material", "open circuit potential", "particle mechanics", "particle", "particle phases", "stress-induced diffusion", ] and isinstance(value, tuple) and len(value) == 2 ) ): # more possible options that can take 2-tuples to be added # as they come raise pybamm.OptionError( f"\n'{value}' is not recognized in option '{option}'. " "Values must be strings or (in some cases) " "2-tuples of strings" ) # flatten value value_list = [] for val in value: if isinstance(val, tuple): value_list.extend(list(val)) else: value_list.append(val) for val in value_list: if option == "timescale": if not (val == "default" or isinstance(val, numbers.Number)): raise pybamm.OptionError( "'timescale' option must be either 'default' " "or a number" ) elif val not in self.possible_options[option]: if not (option == "operating mode" and callable(val)): raise pybamm.OptionError( f"\n'{val}' is not recognized in option '{option}'. " f"Possible values are {self.possible_options[option]}" ) super().__init__(options.items()) @property def phases(self): try: return self._phases except AttributeError: self._phases = {} for domain in ["negative", "positive"]: number = int(getattr(self, domain)["particle phases"]) phases = ["primary"] if number >= 2: phases.append("secondary") self._phases[domain] = phases return self._phases @cached_property def whole_cell_domains(self): if self["working electrode"] == "positive": return ["separator", "positive electrode"] elif self["working electrode"] == "negative": return ["negative electrode", "separator"] elif self["working electrode"] == "both": return ["negative electrode", "separator", "positive electrode"] @property def electrode_types(self): try: return self._electrode_types except AttributeError: self._electrode_types = {} for domain in ["negative", "positive"]: if f"{domain} electrode" in self.whole_cell_domains: self._electrode_types[domain] = "porous" else: self._electrode_types[domain] = "planar" return self._electrode_types
[docs] def print_options(self): """ Print the possible options with the ones currently selected """ for key, value in self.items(): if key in self.possible_options.keys(): print(f"{key!r}: {value!r} (possible: {self.possible_options[key]!r})") else: print(f"{key!r}: {value!r}")
[docs] def print_detailed_options(self): """ Print the docstring for Options """ print(self.__doc__)
@property def negative(self): "Returns the options for the negative electrode" # index 0 in a 2-tuple for the negative electrode return BatteryModelDomainOptions(self.items(), 0) @property def positive(self): "Returns the options for the positive electrode" # index 1 in a 2-tuple for the positive electrode return BatteryModelDomainOptions(self.items(), 1)
class BatteryModelDomainOptions(dict): def __init__(self, dict_items, index): super().__init__(dict_items) self.index = index def __getitem__(self, key): options = super().__getitem__(key) if isinstance(options, str): return options else: # 2-tuple, first is negative domain, second is positive domain return options[self.index] @property def primary(self): return BatteryModelPhaseOptions(self, 0) @property def secondary(self): return BatteryModelPhaseOptions(self, 1) class BatteryModelPhaseOptions(dict): def __init__(self, domain_options, index): super().__init__(domain_options.items()) self.domain_options = domain_options self.index = index def __getitem__(self, key): options = self.domain_options.__getitem__(key) if isinstance(options, str): return options else: # 2-tuple, first is primary phase, second is secondary phase return options[self.index]
[docs]class BaseBatteryModel(pybamm.BaseModel): """ Base model class with some default settings and required variables Parameters ---------- options : dict-like, optional A dictionary of options to be passed to the model. If this is a dict (and not a subtype of dict), it will be processed by :class:`pybamm.BatteryModelOptions` to ensure that the options are valid. If this is a subtype of dict, it is assumed that the options have already been processed and are valid. This allows for the use of custom options classes. The default options are given by :class:`pybamm.BatteryModelOptions`. name : str, optional The name of the model. The default is "Unnamed battery model". **Extends:** :class:`pybamm.BaseModel` """ def __init__(self, options=None, name="Unnamed battery model"): super().__init__(name) self.options = options @pybamm.BaseModel.timescale.setter def timescale(self, value): """Set the timescale""" raise NotImplementedError( "Timescale cannot be directly overwritten for this model. " "Pass a timescale to the 'timescale' option instead." ) @pybamm.BaseModel.length_scales.setter def length_scales(self, value): """Set the length scales""" raise NotImplementedError( "Length scales cannot be directly overwritten for this model. " ) @property def default_geometry(self): return pybamm.battery_geometry(options=self.options) @property def default_var_pts(self): base_var_pts = { "x_n": 20, "x_s": 20, "x_p": 20, "r_n": 20, "r_p": 20, "r_n_prim": 20, "r_p_prim": 20, "r_n_sec": 20, "r_p_sec": 20, "y": 10, "z": 10, "R_n": 30, "R_p": 30, } # Reduce the default points for 2D current collectors if self.options["dimensionality"] == 2: base_var_pts.update({"x_n": 10, "x_s": 10, "x_p": 10}) return base_var_pts @property def default_submesh_types(self): base_submeshes = { "negative electrode": pybamm.Uniform1DSubMesh, "separator": pybamm.Uniform1DSubMesh, "positive electrode": pybamm.Uniform1DSubMesh, "negative particle": pybamm.Uniform1DSubMesh, "positive particle": pybamm.Uniform1DSubMesh, "negative primary particle": pybamm.Uniform1DSubMesh, "positive primary particle": pybamm.Uniform1DSubMesh, "negative secondary particle": pybamm.Uniform1DSubMesh, "positive secondary particle": pybamm.Uniform1DSubMesh, "negative particle size": pybamm.Uniform1DSubMesh, "positive particle size": pybamm.Uniform1DSubMesh, } if self.options["dimensionality"] == 0: base_submeshes["current collector"] = pybamm.SubMesh0D elif self.options["dimensionality"] == 1: base_submeshes["current collector"] = pybamm.Uniform1DSubMesh elif self.options["dimensionality"] == 2: base_submeshes["current collector"] = pybamm.ScikitUniform2DSubMesh return base_submeshes @property def default_spatial_methods(self): base_spatial_methods = { "macroscale": pybamm.FiniteVolume(), "negative particle": pybamm.FiniteVolume(), "positive particle": pybamm.FiniteVolume(), "negative primary particle": pybamm.FiniteVolume(), "positive primary particle": pybamm.FiniteVolume(), "negative secondary particle": pybamm.FiniteVolume(), "positive secondary particle": pybamm.FiniteVolume(), "negative particle size": pybamm.FiniteVolume(), "positive particle size": pybamm.FiniteVolume(), } if self.options["dimensionality"] == 0: # 0D submesh - use base spatial method base_spatial_methods[ "current collector" ] = pybamm.ZeroDimensionalSpatialMethod() elif self.options["dimensionality"] == 1: base_spatial_methods["current collector"] = pybamm.FiniteVolume() elif self.options["dimensionality"] == 2: base_spatial_methods["current collector"] = pybamm.ScikitFiniteElement() return base_spatial_methods @property def options(self): return self._options @options.setter def options(self, extra_options): # if extra_options is a dict then process it into a BatteryModelOptions # this does not catch cases that subclass the dict type # so other submodels can pass in their own options class if needed if extra_options is None or type(extra_options) == dict: options = BatteryModelOptions(extra_options) else: options = extra_options # Options that are incompatible with models if isinstance(self, pybamm.lithium_ion.BaseModel): if options["convection"] != "none": raise pybamm.OptionError( "convection not implemented for lithium-ion models" ) if isinstance(self, pybamm.lithium_ion.SPMe): if options["electrolyte conductivity"] not in [ "default", "composite", "integrated", ]: raise pybamm.OptionError( "electrolyte conductivity '{}' not suitable for SPMe".format( options["electrolyte conductivity"] ) ) if isinstance(self, pybamm.lithium_ion.SPM) and not isinstance( self, pybamm.lithium_ion.SPMe ): if options["x-average side reactions"] == "false": raise pybamm.OptionError( "x-average side reactions cannot be 'false' for SPM models" ) if isinstance(self, pybamm.lithium_ion.SPM) and not isinstance( self, pybamm.lithium_ion.MPM ): if options["particle size"] == "distribution": raise pybamm.OptionError( "'particle size' should be 'single' for SPM and SPMe models" ) if isinstance(self, pybamm.lead_acid.BaseModel): if options["thermal"] != "isothermal" and options["dimensionality"] != 0: raise pybamm.OptionError( "Lead-acid models can only have thermal " "effects if dimensionality is 0." ) if options["SEI"] != "none" or options["SEI film resistance"] != "none": raise pybamm.OptionError("Lead-acid models cannot have SEI formation") if options["lithium plating"] != "none": raise pybamm.OptionError("Lead-acid models cannot have lithium plating") if ( isinstance(self, pybamm.lead_acid.LOQS) and options["surface form"] == "false" and options["hydrolysis"] == "true" ): raise pybamm.OptionError( """must use surface formulation to solve {!s} with hydrolysis """.format( self ) ) self._options = options def set_standard_output_variables(self): # Time self.variables.update( { "Time": pybamm.t, "Time [s]": pybamm.t * self.timescale, "Time [min]": pybamm.t * self.timescale / 60, "Time [h]": pybamm.t * self.timescale / 3600, } ) # Spatial var = pybamm.standard_spatial_vars L_x = self.param.L_x L_z = self.param.L_z self.variables.update( { "x": var.x, "x [m]": var.x * L_x, "x_n": var.x_n, "x_n [m]": var.x_n * L_x, "x_s": var.x_s, "x_s [m]": var.x_s * L_x, "x_p": var.x_p, "x_p [m]": var.x_p * L_x, } ) if self.options["dimensionality"] == 1: self.variables.update({"z": var.z, "z [m]": var.z * L_z}) elif self.options["dimensionality"] == 2: # Note: both y and z are scaled with L_z self.variables.update( {"y": var.y, "y [m]": var.y * L_z, "z": var.z, "z [m]": var.z * L_z} ) def build_model_equations(self): # Set model equations for submodel_name, submodel in self.submodels.items(): pybamm.logger.verbose( "Setting rhs for {} submodel ({})".format(submodel_name, self.name) ) submodel.set_rhs(self.variables) pybamm.logger.verbose( "Setting algebraic for {} submodel ({})".format( submodel_name, self.name ) ) submodel.set_algebraic(self.variables) pybamm.logger.verbose( "Setting boundary conditions for {} submodel ({})".format( submodel_name, self.name ) ) submodel.set_boundary_conditions(self.variables) pybamm.logger.verbose( "Setting initial conditions for {} submodel ({})".format( submodel_name, self.name ) ) submodel.set_initial_conditions(self.variables) submodel.set_events(self.variables) pybamm.logger.verbose( "Updating {} submodel ({})".format(submodel_name, self.name) ) self.update(submodel) self.check_no_repeated_keys() def build_model(self): # Build model variables and equations self._build_model() # Set battery specific variables pybamm.logger.debug("Setting voltage variables ({})".format(self.name)) self.set_voltage_variables() pybamm.logger.debug("Setting SoC variables ({})".format(self.name)) self.set_soc_variables() pybamm.logger.debug("Setting degradation variables ({})".format(self.name)) self.set_degradation_variables() self.set_summary_variables() self._built = True pybamm.logger.info("Finish building {}".format(self.name)) @property def summary_variables(self): return self._summary_variables @summary_variables.setter def summary_variables(self, value): """ Set summary variables Parameters ---------- value : list of strings Names of the summary variables. Must all be in self.variables. """ for var in value: if var not in self.variables: raise KeyError( f"No cycling variable defined for summary variable '{var}'" ) self._summary_variables = value def set_summary_variables(self): self._summary_variables = [] def get_intercalation_kinetics(self, domain): options = getattr(self.options, domain) if options["intercalation kinetics"] == "symmetric Butler-Volmer": return pybamm.kinetics.SymmetricButlerVolmer elif options["intercalation kinetics"] == "asymmetric Butler-Volmer": return pybamm.kinetics.AsymmetricButlerVolmer elif options["intercalation kinetics"] == "linear": return pybamm.kinetics.Linear elif options["intercalation kinetics"] == "Marcus": return pybamm.kinetics.Marcus elif options["intercalation kinetics"] == "Marcus-Hush-Chidsey": return pybamm.kinetics.MarcusHushChidsey def get_inverse_intercalation_kinetics(self): if self.options["intercalation kinetics"] == "symmetric Butler-Volmer": return pybamm.kinetics.InverseButlerVolmer else: raise pybamm.OptionError( "Inverse kinetics are only implemented for symmetric Butler-Volmer. " "Use option {'surface form': 'algebraic'} to use forward kinetics " "instead." )
[docs] def set_external_circuit_submodel(self): """ Define how the external circuit defines the boundary conditions for the model, e.g. (not necessarily constant-) current, voltage, etc """ if self.options["operating mode"] == "current": model = pybamm.external_circuit.ExplicitCurrentControl( self.param, self.options ) elif self.options["operating mode"] == "voltage": model = pybamm.external_circuit.VoltageFunctionControl( self.param, self.options ) elif self.options["operating mode"] == "power": model = pybamm.external_circuit.PowerFunctionControl( self.param, self.options, "algebraic" ) elif self.options["operating mode"] == "differential power": model = pybamm.external_circuit.PowerFunctionControl( self.param, self.options, "differential without max" ) elif self.options["operating mode"] == "explicit power": model = pybamm.external_circuit.ExplicitPowerControl( self.param, self.options ) elif self.options["operating mode"] == "resistance": model = pybamm.external_circuit.ResistanceFunctionControl( self.param, self.options, "algebraic" ) elif self.options["operating mode"] == "differential resistance": model = pybamm.external_circuit.ResistanceFunctionControl( self.param, self.options, "differential without max" ) elif self.options["operating mode"] == "explicit resistance": model = pybamm.external_circuit.ExplicitResistanceControl( self.param, self.options ) elif self.options["operating mode"] == "CCCV": model = pybamm.external_circuit.CCCVFunctionControl( self.param, self.options ) elif callable(self.options["operating mode"]): model = pybamm.external_circuit.FunctionControl( self.param, self.options["operating mode"], self.options ) self.submodels["external circuit"] = model
def set_transport_efficiency_submodels(self): self.submodels[ "electrolyte transport efficiency" ] = pybamm.transport_efficiency.Bruggeman( self.param, "Electrolyte", self.options ) self.submodels[ "electrode transport efficiency" ] = pybamm.transport_efficiency.Bruggeman(self.param, "Electrode", self.options) def set_thermal_submodel(self): if self.options["thermal"] == "isothermal": thermal_submodel = pybamm.thermal.isothermal.Isothermal elif self.options["thermal"] == "lumped": thermal_submodel = pybamm.thermal.Lumped elif self.options["thermal"] == "x-lumped": if self.options["dimensionality"] == 0: thermal_submodel = pybamm.thermal.Lumped elif self.options["dimensionality"] == 1: thermal_submodel = pybamm.thermal.pouch_cell.CurrentCollector1D elif self.options["dimensionality"] == 2: thermal_submodel = pybamm.thermal.pouch_cell.CurrentCollector2D elif self.options["thermal"] == "x-full": if self.options["dimensionality"] == 0: thermal_submodel = pybamm.thermal.OneDimensionalX self.submodels["thermal"] = thermal_submodel(self.param, self.options) def set_current_collector_submodel(self): if self.options["current collector"] in ["uniform"]: submodel = pybamm.current_collector.Uniform(self.param) elif self.options["current collector"] == "potential pair": if self.options["dimensionality"] == 1: submodel = pybamm.current_collector.PotentialPair1plus1D(self.param) elif self.options["dimensionality"] == 2: submodel = pybamm.current_collector.PotentialPair2plus1D(self.param) self.submodels["current collector"] = submodel def set_interface_utilisation_submodel(self): for domain in ["negative", "positive"]: Domain = domain.capitalize() util = getattr(self.options, domain)["interface utilisation"] if util == "full": submodel = pybamm.interface_utilisation.Full( self.param, domain, self.options ) elif util == "constant": submodel = pybamm.interface_utilisation.Constant( self.param, domain, self.options ) elif util == "current-driven": if self.options.electrode_types[domain] == "planar": reaction_loc = "interface" elif self.x_average: reaction_loc = "x-average" else: reaction_loc = "full electrode" submodel = pybamm.interface_utilisation.CurrentDriven( self.param, domain, self.options, reaction_loc ) self.submodels[f"{Domain} interface utilisation"] = submodel def set_voltage_variables(self): if self.options.negative["particle phases"] == "1": # Only one phase, no need to distinguish between # "primary" and "secondary" phase_n = "" else: # add a space so that we can use "" or (e.g.) "primary " interchangeably # when naming variables phase_n = "primary " if self.options.positive["particle phases"] == "1": phase_p = "" else: phase_p = "primary " ocp_n = self.variables[f"Negative electrode {phase_n}open circuit potential"] ocp_p = self.variables[f"Positive electrode {phase_p}open circuit potential"] ocp_n_av = self.variables[ f"X-averaged negative electrode {phase_n}open circuit potential" ] ocp_p_av = self.variables[ f"X-averaged positive electrode {phase_p}open circuit potential" ] ocp_n_dim = self.variables[ f"Negative electrode {phase_n}open circuit potential [V]" ] ocp_p_dim = self.variables[ f"Positive electrode {phase_p}open circuit potential [V]" ] ocp_n_av_dim = self.variables[ f"X-averaged negative electrode {phase_n}open circuit potential [V]" ] ocp_p_av_dim = self.variables[ f"X-averaged positive electrode {phase_p}open circuit potential [V]" ] ocp_n_left = pybamm.boundary_value(ocp_n, "left") ocp_n_left_dim = pybamm.boundary_value(ocp_n_dim, "left") ocp_p_right = pybamm.boundary_value(ocp_p, "right") ocp_p_right_dim = pybamm.boundary_value(ocp_p_dim, "right") ocv_av = ocp_p_av - ocp_n_av ocv_av_dim = ocp_p_av_dim - ocp_n_av_dim ocv = ocp_p_right - ocp_n_left ocv_dim = ocp_p_right_dim - ocp_n_left_dim # overpotentials if self.options.electrode_types["negative"] == "planar": eta_r_n_av = self.variables[ "Lithium metal interface reaction overpotential" ] eta_r_n_av_dim = self.variables[ "Lithium metal interface reaction overpotential [V]" ] else: eta_r_n_av = self.variables[ f"X-averaged negative electrode {phase_n}reaction overpotential" ] eta_r_n_av_dim = self.variables[ f"X-averaged negative electrode {phase_n}reaction overpotential [V]" ] eta_r_p_av = self.variables[ f"X-averaged positive electrode {phase_p}reaction overpotential" ] eta_r_p_av_dim = self.variables[ f"X-averaged positive electrode {phase_p}reaction overpotential [V]" ] delta_phi_s_n_av = self.variables["X-averaged negative electrode ohmic losses"] delta_phi_s_n_av_dim = self.variables[ "X-averaged negative electrode ohmic losses [V]" ] delta_phi_s_p_av = self.variables["X-averaged positive electrode ohmic losses"] delta_phi_s_p_av_dim = self.variables[ "X-averaged positive electrode ohmic losses [V]" ] delta_phi_s_av = delta_phi_s_p_av - delta_phi_s_n_av delta_phi_s_av_dim = delta_phi_s_p_av_dim - delta_phi_s_n_av_dim eta_r_av = eta_r_p_av - eta_r_n_av eta_r_av_dim = eta_r_p_av_dim - eta_r_n_av_dim # SEI film overpotential if self.options.electrode_types["negative"] == "planar": eta_sei_av = self.variables["SEI film overpotential"] eta_sei_av_dim = self.variables["SEI film overpotential [V]"] else: eta_sei_av = self.variables[f"X-averaged {phase_n}SEI film overpotential"] eta_sei_av_dim = self.variables[ f"X-averaged {phase_n}SEI film overpotential [V]" ] # TODO: add current collector losses to the voltage in 3D self.variables.update( { "X-averaged open circuit voltage": ocv_av, "Measured open circuit voltage": ocv, "X-averaged open circuit voltage [V]": ocv_av_dim, "Measured open circuit voltage [V]": ocv_dim, "X-averaged reaction overpotential": eta_r_av, "X-averaged reaction overpotential [V]": eta_r_av_dim, "X-averaged SEI film overpotential": eta_sei_av, "X-averaged SEI film overpotential [V]": eta_sei_av_dim, "X-averaged solid phase ohmic losses": delta_phi_s_av, "X-averaged solid phase ohmic losses [V]": delta_phi_s_av_dim, } ) # Battery-wide variables V = self.variables["Terminal voltage"] V_dim = self.variables["Terminal voltage [V]"] eta_e_av_dim = self.variables["X-averaged electrolyte ohmic losses [V]"] eta_c_av_dim = self.variables["X-averaged concentration overpotential [V]"] num_cells = pybamm.Parameter( "Number of cells connected in series to make a battery" ) self.variables.update( { "X-averaged battery open circuit voltage [V]": ocv_av_dim * num_cells, "Measured battery open circuit voltage [V]": ocv_dim * num_cells, "X-averaged battery reaction overpotential [V]": eta_r_av_dim * num_cells, "X-averaged battery solid phase ohmic losses [V]": delta_phi_s_av_dim * num_cells, "X-averaged battery electrolyte ohmic losses [V]": eta_e_av_dim * num_cells, "X-averaged battery concentration overpotential [V]": eta_c_av_dim * num_cells, "Battery voltage [V]": V_dim * num_cells, } ) # Variables for calculating the equivalent circuit model (ECM) resistance # Need to compare OCV to initial value to capture this as an overpotential ocv_init = self.param.ocv_init ocv_init_dim = self.param.ocv_ref + self.param.potential_scale * ocv_init eta_ocv = ocv - ocv_init eta_ocv_dim = ocv_dim - ocv_init_dim # Current collector current density for working out euiqvalent resistance # based on Ohm's Law i_cc = self.variables["Current collector current density"] i_cc_dim = self.variables["Current collector current density [A.m-2]"] # ECM overvoltage is OCV minus terminal voltage v_ecm = ocv - V v_ecm_dim = ocv_dim - V_dim # Current collector area for turning resistivity into resistance A_cc = self.param.A_cc # Hack to avoid division by zero if i_cc is exactly zero # If i_cc is zero, i_cc_not_zero becomes 1. But multiplying by sign(i_cc) makes # the local resistance 'zero' (really, it's not defined when i_cc is zero) def x_not_zero(x): return ((x > 0) + (x < 0)) * x + (x >= 0) * (x <= 0) i_cc_not_zero = x_not_zero(i_cc) i_cc_dim_not_zero = x_not_zero(i_cc_dim) self.variables.update( { "Change in measured open circuit voltage": eta_ocv, "Change in measured open circuit voltage [V]": eta_ocv_dim, "Local ECM resistance": pybamm.sign(i_cc) * v_ecm / (i_cc_not_zero * A_cc), "Local ECM resistance [Ohm]": pybamm.sign(i_cc) * v_ecm_dim / (i_cc_dim_not_zero * A_cc), } ) # Cut-off voltage self.events.append( pybamm.Event( "Minimum voltage", V - self.param.voltage_low_cut, pybamm.EventType.TERMINATION, ) ) self.events.append( pybamm.Event( "Maximum voltage", self.param.voltage_high_cut - V, pybamm.EventType.TERMINATION, ) ) # Cut-off open-circuit voltage (for event switch with casadi 'fast with events' # mode) # A tolerance of ~1 is sufficiently small since the dimensionless voltage is # scaled with the thermal voltage (0.025V) and hence has a range of around 60 tol = 5 self.events.append( pybamm.Event( "Minimum voltage switch", V - (self.param.voltage_low_cut - tol), pybamm.EventType.SWITCH, ) ) self.events.append( pybamm.Event( "Maximum voltage switch", V - (self.param.voltage_high_cut + tol), pybamm.EventType.SWITCH, ) ) # Power and resistance I_dim = self.variables["Current [A]"] I_dim_not_zero = x_not_zero(I_dim) self.variables.update( { "Terminal power [W]": I_dim * V_dim, "Power [W]": I_dim * V_dim, "Resistance [Ohm]": pybamm.sign(I_dim) * V_dim / I_dim_not_zero, } )
[docs] def set_degradation_variables(self): """ Set variables that quantify degradation. This function is overriden by the base battery models """ pass
[docs] def set_soc_variables(self): """ Set variables relating to the state of charge. This function is overriden by the base battery models """ pass